Crynodeb
In this paper we introduce the V -transform (V -BWT), a variant of the classic Burrows–Wheeler Transform. The original BWT uses lexicographic order, whereas we apply a distinct total ordering of strings called V -order. V -order string comparison and Lyndonlike factorization of a string x = x[1..n] into V -words have recently been shown to be linear in their use of time and space (Daykin et al., 2011). Here we apply these subcomputations, along with Θ(n) suffix-sorting (Ko and Aluru, 2003), to implement linear V -sorting of all the rotations of a string. When it is known that the input string x is a V -word, we compute the V -transform in Θ(n) time and space, and also outline an efficient algorithm for inverting the V -transform and recovering x. We further outline a bijective algorithm in the case that x is arbitrary. We propose future research into other variants of transforms using lex-extension orderings (Daykin et al., 2013). Motivation for this work arises in possible applications to data compression.
Iaith wreiddiol | Saesneg |
---|---|
Tudalennau (o-i) | 77-89 |
Nifer y tudalennau | 13 |
Cyfnodolyn | Theoretical Computer Science |
Cyfrol | 531 |
Dyddiad ar-lein cynnar | 12 Maw 2014 |
Dynodwyr Gwrthrych Digidol (DOIs) | |
Statws | Cyhoeddwyd - 24 Ebr 2014 |
Cyhoeddwyd yn allanol | Ie |
Ôl bys
Gweld gwybodaeth am bynciau ymchwil 'A bijective variant of the Burrows–Wheeler Transform using V-order'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.Proffiliau
-
Jacqueline Daykin
- Cyfadran Busnes a’r Gwyddorau Ffisegol, Cyfrifiadureg - Honorary Research Fellow
Unigolyn: Arall