A local uniqueness result for a quasi-linear heat transmission problem in a periodic two-phase dilute composite

Matteo Dalla Riva, Massimo Lanza de Cristoforis, Paolo Musolino

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddPennod

4 Dyfyniadau(SciVal)

Crynodeb

We consider a quasi-linear heat transmission problem for a composite material which fills the n-dimensional Euclidean space. The composite has a periodic structure and consists of two materials. In each periodicity cell one material occupies a cavity of size, and the second material fills the remaining part of the cell. We assume that the thermal conductivities of the materials depend nonlinearly upon the temperature. For small enough the problem is known to have a solution, i.e., a pair of functions which determine the temperature distribution in the two materials. Then we prove a limiting property and a local uniqueness result for families of solutions which converge as tends to 0.

Iaith wreiddiolSaesneg
TeitlRecent Trends in Operator Theory and Partial Differential Equations
GolygyddionVladimir Maz'ya , David Natroshvili, Eugene Shargorodsky
CyhoeddwrSpringer Nature
Tudalennau193-227
Nifer y tudalennau35
Cyfrol258
ISBN (Electronig)978-3-319-47079-5
ISBN (Argraffiad)978-3-319-47077-1, 3319470779
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 15 Maw 2017

Cyfres gyhoeddiadau

EnwOperator Theory: Advances and Applications
Cyfrol258

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'A local uniqueness result for a quasi-linear heat transmission problem in a periodic two-phase dilute composite'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn