A noncommutative extended de Finetti theorem

Claus Köstler

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

27 Dyfyniadau (Scopus)

Crynodeb

The extended de Finetti theorem characterizes exchangeable infinite sequences of random variables as conditionally i.i.d. and shows that the apparently weaker distributional symmetry of spreadability is equivalent to exchangeability. Our main result is a noncommutative version of this theorem. In contrast to the classical result of Ryll-Nardzewski, exchangeability turns out to be stronger than spreadability for infinite sequences of noncommutative random variables. Out of our investigations emerges noncommutative conditional independence in terms of a von Neumann algebraic structure closely related to Popa's notion of commuting squares and Kümmerer's generalized Bernoulli shifts. Our main result is applicable to classical probability, quantum probability, in particular free probability, braid group representations and Jones subfactors.
Iaith wreiddiolSaesneg
Tudalennau (o-i)1073-1120
Nifer y tudalennau48
CyfnodolynJournal of Functional Analysis
Cyfrol258
Rhif cyhoeddi4
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 15 Chwef 2010

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'A noncommutative extended de Finetti theorem'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn