A Novel Data-driven Approach to Autonomous Fuzzy Clustering

Xiaowei Gu, Qiang Ni, Guolin Tang

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

24 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

In this article, a new data-driven autonomous fuzzy clustering (AFC) algorithm is proposed for static data clustering. Employing a Gaussian-type membership function, AFC first uses all the data samples as microcluster medoids to assign memberships to each other and obtains the membership matrix. Based on this, AFC chooses these data samples that represent local models of data distribution as cluster medoids for initial partition. It then continues to optimize the cluster medoids iteratively to obtain a locally optimal partition as the algorithm output. Moreover, an online extension is introduced to AFC enabling the algorithm to cluster streaming data chunk-by-chunk in a 'one pass' manner. Numerical examples based on a variety of benchmark problems demonstrate the efficacy of the AFC algorithm in both offline and online application scenarios, proving the effectiveness and validity of the proposed concept and general principles.

Iaith wreiddiolSaesneg
Tudalennau (o-i)2073-2085
Nifer y tudalennau13
CyfnodolynIEEE Transactions on Fuzzy Systems
Cyfrol30
Rhif cyhoeddi6
Dyddiad ar-lein cynnar20 Ebr 2021
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 01 Meh 2022
Cyhoeddwyd yn allanolIe

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'A Novel Data-driven Approach to Autonomous Fuzzy Clustering'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn