A Quantatiitive Study of Texture Features across Different Window Sizes in Prostate T2-weighted MRI

Andrik Rampun, Liping Wang, Paul Malcolm, Reyer Zwiggelaar

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

3 Dyfyniadau (Scopus)
196 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

This study aims to investigate the effects of window size on the performance of prostate cancer CAD and to identify discriminant texture descriptors in prostate T2-W MRI. For this purpose we extracted 215 texture features from 418 T2-W MRI images and extracted them using 9 different window sizes (3 × 3 to 19 × 19). The Bayesian Network and Random Forest classifiers were employed to perform the classification. Experimental results suggest that using window size of 9 × 9 and 11 × 11 produced Az > 89%. Also, this study suggests a set of best texture features based on our experimental results.
Iaith wreiddiolSaesneg
Tudalennau (o-i)74-79
Nifer y tudalennau6
CyfnodolynProcedia Computer Science
Cyfrol90
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 06 Gorff 2016
DigwyddiadMedical Imaging Understanding and Analysis - Loughborough University, Loughborough, Teyrnas Unedig Prydain Fawr a Gogledd Iwerddon
Hyd: 06 Gorff 201608 Gorff 2016
Rhif y gynhadledd: 20

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'A Quantatiitive Study of Texture Features across Different Window Sizes in Prostate T2-weighted MRI'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn