A self-scaling instruction generator using Cartesian Genetic Programming

Yang Liu*, Gianluca Tempesti, James A. Walker, Jon Timmis, Andrew M. Tyrrell, Paul Bremner

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

3 Dyfyniadau (Scopus)

Crynodeb

In the past decades, a number of genetic programming techniques have been developed to evolve machine instructions. However, these approaches typically suffer from a lack of scalability that seriously impairs their applicability to real-world scenarios. In this paper, a novel self-scaling instruction generation method is introduced, which tries to overcome the scalability issue by using Cartesian Genetic Programming. In the proposed method, a dual-layer network architecture is created: one layer is used to evolve a series of instructions while the other is dedicated to the generation of loop control parameters.

Iaith wreiddiolSaesneg
TeitlGenetic Programming - 14th European Conference, EuroGP 2011, Proceedings
CyhoeddwrSpringer Nature
Tudalennau298-309
Nifer y tudalennau12
ISBN (Argraffiad)9783642204067
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 2011
Digwyddiad14th European Conference on Genetic Programming, EuroGP 2011 - Torino, Yr Eidal
Hyd: 27 Ebr 201129 Ebr 2011

Cyfres gyhoeddiadau

EnwLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Cyfrol6621 LNCS
ISSN (Argraffiad)0302-9743
ISSN (Electronig)1611-3349

Cynhadledd

Cynhadledd14th European Conference on Genetic Programming, EuroGP 2011
Gwlad/TiriogaethYr Eidal
DinasTorino
Cyfnod27 Ebr 201129 Ebr 2011

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'A self-scaling instruction generator using Cartesian Genetic Programming'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn