A singularly perturbed Dirichlet problem for the Laplace operator in a periodically perforated domain. A functional analytic approach

Paolo Musolino*

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

26 Dyfyniadau (Scopus)

Crynodeb

Let Ω be a sufficiently regular bounded connected open subset of R n such that 0 ∈ Ω and that R n\clΩ is connected. Then we take q 11, ⋯ ,q nn ∈ ]0,+ ∞ [and p∈Q≡∏ j=1 n]0,q jj[. If ε is a small positive number, then we define the periodically perforated domain S[Ω ε]-≡R n\ ∪ z∈Zn/cl(p+εΩ+∑ j=1 n(q jjz j)e j, where {e 1, ⋯ ,e n} is the canonical basis of R n. For ε small and positive, we introduce a particular Dirichlet problem for the Laplace operator in the set S[Ωε]-. Namely, we consider a Dirichlet condition on the boundary of the set p + εΩ, together with a periodicity condition. Then we show real analytic continuation properties of the solution and of the corresponding energy integral as functionals of the pair of ε and of the Dirichlet datum on p + ε∂Ω, around a degenerate pair with ε = 0.

Iaith wreiddiolSaesneg
Tudalennau (o-i)334-349
Nifer y tudalennau16
CyfnodolynMathematical Methods in the Applied Sciences
Cyfrol35
Rhif cyhoeddi3
Dyddiad ar-lein cynnar30 Rhag 2011
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 01 Chwef 2012

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'A singularly perturbed Dirichlet problem for the Laplace operator in a periodically perforated domain. A functional analytic approach'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn