A singularly perturbed Neumann problem for the Poisson equation in a periodically perforated domain. A functional analytic approach

Massimo Lanza de cristoforis*, Paolo Musolino

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

8 Dyfyniadau (Scopus)

Crynodeb

We consider a Neumann problem for the Poisson equation in the periodically perforated Euclidean space. Each periodic perforation has a size proportional to a positive parameter ε. For each positive and small ε, we denote by v(ε,·) a suitably normalized solution. Then we are interested to analyze the behavior of v(ε,·) when ε is close to the degenerate value ε=0, where the holes collapse to points. In particular we prove that if n≥3, then v(ε,·) can be expanded into a convergent series expansion of powers of ε and that if n=2 then v(ε,·) can be expanded into a convergent double series expansion of powers of ε and εlogε. Our approach is based on potential theory and functional analysis and is alternative to those of asymptotic analysis.

Iaith wreiddiolSaesneg
Tudalennau (o-i)253-272
CyfnodolynZAMM Zeitschrift fur Angewandte Mathematik und Mechanik
Cyfrol96
Rhif cyhoeddi2
Dyddiad ar-lein cynnar04 Maw 2015
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 01 Chwef 2016

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'A singularly perturbed Neumann problem for the Poisson equation in a periodically perforated domain. A functional analytic approach'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn