A Texton-Based Approach for the Classification of Benign and Malignant Masses in Mammograms

Zobia Suhail, Azam Hamidinekoo, Erika R. E. Denton, Reyer Zwiggelaar

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

3 Dyfyniadau (Scopus)

Crynodeb

Classification of benign and malignant masses in mammograms is a complex task due to the appearance similarities in both classes. Thus, classification of masses in mammograms is considered an important step in the development of current Computer Aided Diagnosis (CAD) systems. In this paper, we present a way to classify masses without the need for segmentation. A supervised texton-based approach is developed using filter bank responses. Subsequently, a Support Vector Machine (SVM) classifier is used to classify the images. We evaluated the results on a subset of publicly available dataset (DDSM) and obtained classification accuracy of 96% which is comparable to the state-of-the-art techniques developed for the task of mammographic mass classification.
Iaith wreiddiolSaesneg
TeitlMedical Image Understanding and Analysis - 21st Annual Conference, MIUA 2017, Proceedings
Is-deitl21st Annual Conference, MIUA 2017, Edinburgh, UK, July 11–13, 2017, Proceedings
GolygyddionVictor Gonzalez-Castro, Maria Valdes Hernandez
CyhoeddwrSpringer Nature
Tudalennau355-364
Nifer y tudalennau10
ISBN (Electronig)978-3-319-60964-5
ISBN (Argraffiad)978-3-319-60963-8
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 22 Meh 2017

Cyfres gyhoeddiadau

EnwCommunications in Computer and Information Science
CyhoeddwrSpringer Nature
Cyfrol723
ISSN (Argraffiad)1865-0929
ISSN (Electronig)1865-0937

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'A Texton-Based Approach for the Classification of Benign and Malignant Masses in Mammograms'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn