Crynodeb
A major assumption for constructing an effective adaptive-network-based fuzzy inference system (ANFIS) is that sufficient training data are available. However, in many real-world applications, this assumption may not hold, thereby requiring alternative approaches. In light of this observation, this article focuses on automated construction of ANFISs in an effort to enhance the potential of the Takagi-Sugeno fuzzy regression models for situations where only limited training data are available. In particular, the proposed approach works by interpolating a group of fuzzy rules in a certain given domain with the assistance of existing ANFISs in its neighboring domains. The construction process involves a number of computational mechanisms, including a rule dictionary which is created by extracting the rules from the existing ANFISs; a group of rules which are interpolated by exploiting the local linear embedding algorithm to build an intermediate ANFIS; and a fine-tuning method which refines the resulting intermediate ANFIS. The experimental evaluation on both synthetic and real-world datasets is reported, demonstrating that when facing the data shortage situations, the proposed approach helps significantly improve the performance of the original ANFIS modeling mechanism.
Iaith wreiddiol | Saesneg |
---|---|
Rhif yr erthygl | 8913478 |
Tudalennau (o-i) | 2773-2786 |
Nifer y tudalennau | 14 |
Cyfnodolyn | IEEE Transactions on Cybernetics |
Cyfrol | 51 |
Rhif cyhoeddi | 5 |
Dyddiad ar-lein cynnar | 26 Tach 2019 |
Dynodwyr Gwrthrych Digidol (DOIs) | |
Statws | Cyhoeddwyd - 15 Mai 2021 |
Ôl bys
Gweld gwybodaeth am bynciau ymchwil 'ANFIS Construction With Sparse Data via Group Rule Interpolation'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.Proffiliau
-
Changjing Shang
- Cyfadran Busnes a’r Gwyddorau Ffisegol, Cyfrifiadureg - Senior Research Fellow
Unigolyn: Ymchwil