Automatic adaptation of hypermutation rates for multimodal optimisation

Dogan Corus, Pietro S. Oliveto, Donya Yazdani

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

11 Dyfyniadau (Scopus)
131 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

Previous work has shown that in Artificial Immune Systems (AIS) the best static mutation rates to escape local optima with the ageing operator are far from the optimal ones to do so via large hyper-mutations and vice-versa. In this paper we propose an AIS that automatically adapts the mutation rate during the run to make good use of both operators. We perform rigorous time complexity analyses for standard multimodal benchmark functions with significant characteristics and prove that our proposed algorithm can learn to adapt the mutation rate appropriately such that both ageing and hypermutation are effective when they are most useful for escaping local optima. In particular, the algorithm provably adapts the mutation rate such that it is efficient for the problems where either operator has been proven to be effective in the literature.

Iaith wreiddiolSaesneg
TeitlFOGA 2021 - Proceedings of the 16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms
CyhoeddwrAssociation for Computing Machinery
ISBN (Electronig)9781450383523
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 06 Medi 2021
Digwyddiad16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, FOGA 2021 - Virtual, Online, Awstria
Hyd: 06 Medi 202108 Medi 2021

Cyfres gyhoeddiadau

EnwFOGA 2021 - Proceedings of the 16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms

Cynhadledd

Cynhadledd16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, FOGA 2021
Gwlad/TiriogaethAwstria
DinasVirtual, Online
Cyfnod06 Medi 202108 Medi 2021

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Automatic adaptation of hypermutation rates for multimodal optimisation'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn