Automatic Horse Blink Detection Using Computer Vision and Deep Nets

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

Crynodeb

Measurements of dopaminergic activity in the central nervous system provide valuable information about animal health and welfare. In horses, it has been shown that blink rate is correlated to dopaminergic activity and can be used as a non-invasive biomarker. In this paper, we propose two new algorithms for video-based automatic blink detection in horses. The first algorithm employs an OpenCV object tracker to localize the eye, and detects blinks from local color changes over successive frames. The second algorithm is based on a neural net classifier which categorizes each video frame into either ``eye is open'' or ``eye is closed'' categories. It then clusters ``eye is closed'' frames into distinct blink events. Both algorithms run a post-processing method to improve prediction accuracy by removing outliers and merging neighbouring clusters that belong to the same blink event. The test data set consisted of eight RGB video recordings from three healthy horses moving freely in outdoor environment. Our results show that the first algorithm had better accuracy (81 31 p
Iaith wreiddiolSaesneg
TeitlADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2022
GolygyddionG Panoutsos, M Mahfouf, LS Mihaylova
Man cyhoeddiGEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
CyhoeddwrSpringer Nature
Tudalennau436-447
Nifer y tudalennau12
Cyfrol1454
ISBN (Argraffiad)978-3-031-55567-1; 978-3-031-55568-8
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 2024

Cyfres gyhoeddiadau

EnwAdvances in Intelligent Systems and Computing
CyhoeddwrSPRINGER INTERNATIONAL PUBLISHING AG

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Automatic Horse Blink Detection Using Computer Vision and Deep Nets'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn