Available Website Names Classification Using Naive Baye

Kanokphon Kane, Khwunta Kirimasthong, Tossapon Boongoen

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

Crynodeb

This paper presents a method for classifying website names using machine learning techniques based on the analysis of URLs from different websites on the internet. The primary objective is to categorize websites as either positive or negative, aiding in access permissions. The proposed method offers advantages such as improved content filtering, increased risk awareness, enhanced access control, and a comparative analysis with Decision Tree and Logistic Regression models. The experimental dataset includes training and testing data of website URLs, along with external datasets for sentiment analysis. The results demonstrate an impressive accuracy rate of 94 validating the suitability of the method for website name classification. Future work can explore the application of the classification method in network security to detect and block negative websites by classifying them as malicious URLs. This extension would further enhance protection against harmful content and contribute to a more secure online environment.
Iaith wreiddiolSaesneg
TeitlADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2023
GolygyddionP Jenkins, P Grace, L Yang, S Prajapat, N Naik
Man cyhoeddiGEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
CyhoeddwrSpringer Nature
Tudalennau259-269
Nifer y tudalennau11
Cyfrol1453
ISBN (Argraffiad)978-3-031-47507-8; 978-3-031-47508-5
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 2024

Cyfres gyhoeddiadau

EnwAdvances in Intelligent Systems and Computing
CyhoeddwrSPRINGER INTERNATIONAL PUBLISHING AG

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Available Website Names Classification Using Naive Baye'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn