Bio-inspired Anomaly Detection for Low-cost Gas Sensors

Junxiu Liu, Jim Harkin, Liam McDaid, Shvan Karim, Alan G. Millard, James Hilder, Simon Hickinbotham, Anju P. Johnson, Jon Timmis, David M. Halliday, Andy M. Tyrrel

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

1 Dyfyniad (Scopus)

Crynodeb

This paper proposes a novel anomaly detection method for gas sensors using spiking neural network principles. The synapse models with excitatory/inhibitory responses and a single spiking neuron are employed to develop the bio-inspired anomaly detector for a single gas sensor. The approach can detect anomalies in the data, which is collected by the gas sensor by identifying rapid changes rather than a magnitude threshold. In particular, the false-positive detections due to the drifts of low-cost sensors are minimised using the proposed bio-inspired approach. Using the chemicals of surgical spirits and isobutanol as test substances, experiments were carried out to evaluate the proposed method. Results demonstrate that gas anomalies can be detected when the chemical substances are presented to the sensor. In addition, results show that the approach can detect under the presence of sensor drift. The proposed bio-inspired detector was implemented on FPGA hardware, which demonstrates relatively low resources. Compact and energy efficient CMOS-based implementations of the synapse are also available which supports the low-cost potential applications of this approach, e.g. use in safety with drones and ground robots in hazardous scene detection.

Iaith wreiddiolSaesneg
Teitl18th International Conference on Nanotechnology, NANO 2018
CyhoeddwrIEEE Press
ISBN (Electronig)9781538653364
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 02 Gorff 2018
Digwyddiad18th International Conference on Nanotechnology, NANO 2018 - Cork, Iwerddon
Hyd: 23 Gorff 201826 Gorff 2018

Cyfres gyhoeddiadau

EnwProceedings of the IEEE Conference on Nanotechnology
Cyfrol2018-July
ISSN (Argraffiad)1944-9399
ISSN (Electronig)1944-9380

Cynhadledd

Cynhadledd18th International Conference on Nanotechnology, NANO 2018
Gwlad/TiriogaethIwerddon
DinasCork
Cyfnod23 Gorff 201826 Gorff 2018

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Bio-inspired Anomaly Detection for Low-cost Gas Sensors'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn