Biogeochemical Connectivity Between Freshwater Ecosystems beneath the West Antarctic Ice Sheet and the Sub-Ice Marine Environment

Trista J. Vick-Majors*, Alexander B. Michaud, Mark L. Skidmore, Clara Turetta, Carlo Barbante, Brent C. Christner, John E. Dore, Knut Christianson, Andrew C. Mitchell, Amanda M. Achberger, Jill A. Mikucki, John C. Priscu

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

138 Wedi eu Llwytho i Lawr (Pure)


Although subglacial aquatic environments are widespread beneath the Antarctic ice sheet, subglacial biogeochemistry is not well understood, and the contribution of subglacial water to coastal ocean carbon and nutrient cycling remains poorly constrained. The Whillans Subglacial Lake (SLW) ecosystem is upstream from West Antarctica's Gould-Siple Coast ~800 m beneath the surface of the Whillans Ice Stream. SLW hosts an active microbial ecosystem and is part of an active hydrological system that drains into the marine cavity beneath the adjacent Ross Ice Shelf. Here we examine sources and sinks for organic matter in the lake and estimate the freshwater carbon and nutrient delivery from discharges into the coastal embayment. Fluorescence-based characterization of dissolved organic matter revealed microbially driven differences between sediment pore waters and lake water, with an increasing contribution from relict humic-like dissolved organic matter with sediment depth. Mass balance calculations indicated that the pool of dissolved organic carbon in the SLW water column could be produced in 4.8 to 11.9 yr, which is a time frame similar to that of the lakes’ fill-drain cycle. Based on these estimates, subglacial lake water discharged at the Siple Coast could supply an average of 5,400% more than the heterotrophic carbon demand within Siple Coast embayments (6.5% for the entire Ross Ice Shelf cavity). Our results suggest that subglacial discharge represents a heretofore unappreciated source of microbially processed dissolved organic carbon and other nutrients to the Southern Ocean.

Iaith wreiddiolSaesneg
Rhif yr erthygle2019GB006446
CyfnodolynGlobal Biogeochemical Cycles
Rhif cyhoeddi3
Dyddiad ar-lein cynnar26 Chwef 2020
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 01 Maw 2020

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Biogeochemical Connectivity Between Freshwater Ecosystems beneath the West Antarctic Ice Sheet and the Sub-Ice Marine Environment'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn