Classification of mammographic abnormalities using convolutional neural networks

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

47 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

Distinguishing between benign and malignant mammography images is a complex task even for experimented radiologists and, to deal with this issue, researchers developed computer-aided diagnosis systems. This study introduces a machine learning model to classify mammography images into benign and malignant classes. We extract region of interests using the appropriate mask for each mammography image, and we feed it into a modified LeNet model. We add two parallel convolutional blocks to the original LeNet architecture, and we notice a significant increase in the performance. We pre-train the model on the DMID dataset and a subset of the BCDR dataset, and we test it on the remaining subset. The modified lightweight model reached an accuracy of 99%.
Iaith wreiddiolSaesneg
Tudalennau (o-i)137-140
Nifer y tudalennau4
CyfnodolynInternational Journal of Computing and Artificial Intelligence
Cyfrol6
Rhif cyhoeddi1
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 19 Ebr 2025

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Classification of mammographic abnormalities using convolutional neural networks'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn