Classification of Microcalcification Clusters Using Topological Structure Features

Zhili Chen, Arnau Oliver, Erika R. E. Denton, Caroline Boggis, Reyer Zwiggelaar

Allbwn ymchwil: Cyfraniad at gynhadleddPapuradolygiad gan gymheiriaid

Crynodeb

The presence of microcalcification clusters is a primary sign of breast cancer. It is difficult and time consuming for radiologists to diagnose microcalcifications. In this paper, we present a novel method for the classification of malignant and benign microcalcification clusters in mammograms. We analyse the topology of individual microcalcifications within a cluster using multiscale morphology. A microcalcification graph is constructed to represent the topological structure of the cluster and two properties associated with the connectivity are investigated. A multiscale topological feature vector is generated from a set of microcalcification graphs for classification. The validity of the proposed method is evaluated based on the MIAS database. Using a k-nearest neighbour classifier, a classification accuracy of 95% is achieved for both manual annotations and automatic detection results. The obtained area under the ROC curve is 0.93 and 0.92 for the manual and automatic segmentation, respectively.
Iaith wreiddiolSaesneg
Tudalennau37-42
Nifer y tudalennau6
StatwsCyhoeddwyd - 09 Gorff 2012
Digwyddiad16th Conference on Medical Image Understanding and Analysis 2012 - Swansea, Teyrnas Unedig Prydain Fawr a Gogledd Iwerddon
Hyd: 09 Gorff 201211 Gorff 2012

Cynhadledd

Cynhadledd16th Conference on Medical Image Understanding and Analysis 2012
Teitl crynoMIUA 2012
Gwlad/TiriogaethTeyrnas Unedig Prydain Fawr a Gogledd Iwerddon
DinasSwansea
Cyfnod09 Gorff 201211 Gorff 2012

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Classification of Microcalcification Clusters Using Topological Structure Features'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn