TY - JOUR
T1 - Clostridium beijerinckii and Clostridium difficile detoxify methylglyoxal by a novel mechanism involving glycerol dehydrogenase
AU - Young, Michael
AU - Kashket, S.
AU - Kashket, E. R.
AU - Liyanage, H.
N1 - Liyanage, H., Kashket, S., Young, M., Kashket, E. R. (2001). Clostridium beijerinckii and Clostridium difficile detoxify methylglyoxal by a novel mechanism involving glycerol dehydrogenase. Applied and Environmental Microbiology, 67,(5), 2004-2010.
Sponsorship: State Research, Education, and Extension Service, U.S. Department of Agriculture, under agreement 97-35504-5143.
PY - 2001/5
Y1 - 2001/5
N2 - In contrast to gram-negative bacteria, little is known about the mechanisms by which gram-positive bacteria degrade the toxic metabolic intermediate methylglyoxal (MG). Clostridium beijerinckii BR54, a Tn1545 insertion mutant of the NCIMB 8052 strain, formed cultures that contained significantly more (free) MG than wild-type cultures. Moreover, BR54 was more sensitive to growth inhibition by added MG than the wild type, suggesting that it has a reduced ability to degrade MG. The single copy of Tn1545 in this strain lies just downstream from gldA, encoding glycerol dehydrogenase. As a result of antisense RNA production, cell extracts of BR54 possess significantly less glycerol dehydrogenase activity than wild-type cell extracts (H. Liyanage, M. Young, and E. R. Kashket, J. Mol. Microbiol. Biotechnol. 2:87-93, 2000). Inactivation of gldA in both C. beijerinckii and Clostridium difficile gave rise to pinpoint colonies that could not be subcultured, indicating that glycerol dehydrogenase performs an essential function in both organisms. We propose that this role is detoxification of MG. To our knowledge, this is the first report of targeted gene disruption in the C. difficile chromosome.
AB - In contrast to gram-negative bacteria, little is known about the mechanisms by which gram-positive bacteria degrade the toxic metabolic intermediate methylglyoxal (MG). Clostridium beijerinckii BR54, a Tn1545 insertion mutant of the NCIMB 8052 strain, formed cultures that contained significantly more (free) MG than wild-type cultures. Moreover, BR54 was more sensitive to growth inhibition by added MG than the wild type, suggesting that it has a reduced ability to degrade MG. The single copy of Tn1545 in this strain lies just downstream from gldA, encoding glycerol dehydrogenase. As a result of antisense RNA production, cell extracts of BR54 possess significantly less glycerol dehydrogenase activity than wild-type cell extracts (H. Liyanage, M. Young, and E. R. Kashket, J. Mol. Microbiol. Biotechnol. 2:87-93, 2000). Inactivation of gldA in both C. beijerinckii and Clostridium difficile gave rise to pinpoint colonies that could not be subcultured, indicating that glycerol dehydrogenase performs an essential function in both organisms. We propose that this role is detoxification of MG. To our knowledge, this is the first report of targeted gene disruption in the C. difficile chromosome.
U2 - 10.1128/AEM.67.5.2004-2010.2001
DO - 10.1128/AEM.67.5.2004-2010.2001
M3 - Article
C2 - 11319074
SN - 0099-2240
VL - 67
SP - 2004
EP - 2010
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 5
ER -