Combinatorics of Unique Maximal Factorization Families (UMFFs)

David E. Daykin, Jacqueline W. Daykin, William F. Smyth

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Crynodeb

Suppose a set W of strings contains exactly one rotation (cyclic shift) of every primitive string on some alphabet Σ. Then W is a circ-UMFF if and only if every word in Σ^+ has a unique maximal factorization over W. The classic circ-UMFF is the set of Lyndon words based on lexicographic ordering (1958). Duval (1983) designed a linear sequential Lyndon factorization algorithm; a corresponding PRAMparallel algorithmwas described by J. Daykin, Iliopoulos and Smyth (1994). Daykin and Daykin defined new circ-UMFFs based on various methods for totally ordering sets of strings (2003), and further described the structure of all circ-UMFFs (2008). Here we prove new combinatorial results for circ-UMFFs, and in particular for the case of Lyndon words. We introduce Acrobat and Flight Deck circ-UMFFs, and describe some of our results in terms of dictionaries. Applications of circ-UMFFs pertain to structured methods for concatenating and factoring strings over ordered alphabets, and those of Lyndon words are wide ranging and multidisciplinary.
Iaith wreiddiolSaesneg
Tudalennau (o-i)295-309
Nifer y tudalennau15
CyfnodolynFundamenta Informaticae
Cyfrol97
Rhif cyhoeddi3
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 31 Rhag 2009
Cyhoeddwyd yn allanolIe

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Combinatorics of Unique Maximal Factorization Families (UMFFs)'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn