Comparative study of matrix refinement approaches for ensemble clustering

Natthakan Iam-On*, Tossapon Boongoen

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

31 Dyfyniadau (Scopus)
33 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

Cluster ensembles or consensus clusterings have been shown to be better than any standard clustering algorithm at improving accuracy and robustness across various sets of data. This meta-learning formalism also helps users to overcome the dilemma of selecting an appropriate technique and the parameters for that technique. Since founded, different research areas have emerged with the common purpose of enhancing the effectiveness and applicability of cluster ensembles. These include the selection of ensemble members, the imputation of missing values, and the summarization of ensemble members. In particular, this paper is set to provide the review of different matrix refinement approaches that have been recently proposed in the literature for summarizing information of multiple clusterings. With various benchmark datasets and quality measures, the comparative study of these novel techniques is carried out to provide empirical findings from which a practical guideline can be drawn.

Iaith wreiddiolSaesneg
Tudalennau (o-i)269-300
Nifer y tudalennau32
CyfnodolynMachine Learning
Cyfrol98
Rhif cyhoeddi1-2
Dyddiad ar-lein cynnar10 Ebr 2013
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 01 Ion 2015
Cyhoeddwyd yn allanolIe

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Comparative study of matrix refinement approaches for ensemble clustering'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn