Complex robot training tasks through bootstrapping system identification

O. Akanyeti*, U. Nehmzow, S. A. Billings

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

Crynodeb

Many sensor-motor competences in mobile robotics applications exhibit complex, non-linear characteristics. Previous research has shown that polynomial NARMAX models can learn such complex tasks. However as the complexity of the task under investigation increases, representing the whole relationship in one single model using only raw sensory inputs would lead to large models. Training such models is extremely difficult, and, furthermore, obtained models often exhibit poor performances. This paper presents a bootsrapping method of generating complex robot training tasks using simple NARMAX models. We model the desired task by combining predefined low level sensor motor controllers. The viability of the proposed method is demonstrated by teaching a Scitos G5 autonomous robot to achieve complex route learning tasks in the real world robotics experiments.

Iaith wreiddiolSaesneg
Teitl2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008
CyhoeddwrIEEE Press
Tudalennau2168-2173
Nifer y tudalennau6
ISBN (Argraffiad)9781424426799
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 08 Mai 2009
Cyhoeddwyd yn allanolIe
Digwyddiad2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008 - Bangkok, Gwlad Thai
Hyd: 21 Chwef 200926 Chwef 2009

Cyfres gyhoeddiadau

Enw2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008

Cynhadledd

Cynhadledd2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008
Gwlad/TiriogaethGwlad Thai
DinasBangkok
Cyfnod21 Chwef 200926 Chwef 2009

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Complex robot training tasks through bootstrapping system identification'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn