Prosiectau fesul blwyddyn
Crynodeb
Background: High-throughput phenotyping based on non-destructive imaging has great potential in plant biology and breeding programs. However, efficient feature extraction and quantification from image data remains a bottleneck that needs to be addressed. Advances in sensor technology have led to the increasing use of imaging to monitor and measure a range of plants including the model Arabidopsis thaliana. These extensive datasets contain diverse trait information, but feature extraction is often still implemented using approaches requiring substantial manual input. Results: The computational detection and segmentation of individual fruits from images is a challenging task, for which we have developed DeepPod, a patch-based 2-phase deep learning framework. The associated manual annotation task is simple and cost-effective without the need for detailed segmentation or bounding boxes. Convolutional neural networks (CNNs) are used for classifying different parts of the plant inflorescence, including the tip, base, and body of the siliques and the stem inflorescence. In a post-processing step, different parts of the same silique are joined together for silique detection and localization, whilst taking into account possible overlapping among the siliques. The proposed framework is further validated on a separate test dataset of 2,408 images. Comparisons of the CNN-based prediction with manual counting (R 2 = 0.90) showed the desired capability of methods for estimating silique number. Conclusions: The DeepPod framework provides a rapid and accurate estimate of fruit number in a model system widely used by biologists to investigate many fundemental processes underlying growth and reproduction.
Iaith wreiddiol | Saesneg |
---|---|
Rhif yr erthygl | giaa012 |
Nifer y tudalennau | 13 |
Cyfnodolyn | GigaScience |
Cyfrol | 9 |
Rhif cyhoeddi | 3 |
Dynodwyr Gwrthrych Digidol (DOIs) | |
Statws | Cyhoeddwyd - 04 Maw 2020 |
Ôl bys
Gweld gwybodaeth am bynciau ymchwil 'DeepPod: A convolutional neural network based quantification of fruit number in Arabidopsis'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.Proffiliau
-
John Doonan
- Athrofa y Gwyddorau Biolegol, Amgylcheddol a Gwledig - Chair (DLM)
Unigolyn: Dysgu ac Ymchwil
-
-
Setiau Data
-
DeepPod: A convolutional Neural Network Based Quantification of Fruit Number in Arabidopsis
Garzon Martinez, G. A., Lu, C., Doonan, J., Hamidinekoo, A., Ghahremani Boozandani, M. & Corke, F., Prifysgol Aberystwyth | Aberystwyth University, 05 Meh 2019
Dangosydd eitem ddigidol (DOI): 10.20391/21154739-f718-457b-96ff-838408f2b696
Set ddata
Ffeil
Prosiectau
- 2 Wedi Gorffen
-
ISPG BBSRC Strategic Programme in grassland and crops for challenging environments see project 12844
Doonan, J. (Prif Ymchwilydd), Armstead, I. (Cyd-ymchwilydd), Donnison, I. (Cyd-ymchwilydd) & Lu, C. (Cyd-ymchwilydd)
Biotechnology and Biological Sciences Research Council
01 Ebr 2017 → 31 Maw 2019
Prosiect: Ymchwil a ariannwyd yn allanol
-
ISPG-National Phenomics Centre see project 12520
Doonan, J. (Prif Ymchwilydd), Camargo-Rodriguez, A. (Cyd-ymchwilydd), Clare, A. (Cyd-ymchwilydd), Draper, J. (Cyd-ymchwilydd), Howarth, C. (Cyd-ymchwilydd), Powell, W. (Cyd-ymchwilydd), Swain, M. (Cyd-ymchwilydd) & Zwiggelaar, R. (Cyd-ymchwilydd)
Biotechnology and Biological Sciences Research Council
01 Ebr 2017 → 31 Maw 2019
Prosiect: Ymchwil a ariannwyd yn allanol