End-to-end breast ultrasound lesions recognition with a deep learning approach

Moi Hoon Yap, Manu Goyal, Fatima Osman, Ezak Ahmad, Robert Marti, Erika R. E. Denton, Arne Juette, Reyer Zwiggelaar

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

33 Dyfyniadau (Scopus)

Crynodeb

Existing methods for automated breast ultrasound lesions detection and recognition tend to be based on multi-stage processing, such as preprocessing, filtering/denoising, segmentation and classification. The performance of these processes is dependent on the prior stages. To improve the current state of the art, we have proposed an end-to-end breast ultrasound lesions detection and recognition using a deep learning approach. We implemented a popular semantic segmentation framework, i.e. Fully Convolutional Network (FCN-AlexNet) for our experiment. To overcome data deficiency, we used a pre-trained model based on ImageNet and transfer learning. We validated our results on two datasets, which consist of a total of 113 malignant and 356 benign lesions. We assessed the performance of the model using the following split: 70% for training data, 10% for validation data, and 20% testing data. The results show that our proposed method performed better on benign lesions, with a Dice score of 0.6879, when compared to the malignant lesions with a Dice score of 0.5525. When considering the number of images with Dice score > 0.5, 79% of the benign lesions were successfully segmented and correctly recognised, while 65% of the malignant lesions were successfully segmented and correctly recognised. This paper provides the first end-to-end solution for breast ultrasound lesion recognition. The future challenges for the proposed approaches are to obtain additional datasets and customize the deep learning framework to improve the accuracy of this method.
Iaith wreiddiolSaesneg
TeitlMedical Imaging 2018, Proceedings
Is-deitlBiomedical Applications in Molecular, Structural, and Functional Imaging
GolygyddionBarjor Gimi, Andrzej Krol
CyhoeddwrSPIE
Tudalennau287-294
Nifer y tudalennau8
Cyfrol10578
ISBN (Electronig)9781510616455
ISBN (Argraffiad)9781510616455, 1510616454
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 12 Maw 2018
DigwyddiadSPIE Medical Imaging 2018, Proceedings: Biomedical Applications in Molecular, Structural, and Functional Imaging - Houston, Unol Daleithiau America
Hyd: 10 Chwef 201815 Chwef 2018

Cyfres gyhoeddiadau

EnwProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Cyfrol10578
ISSN (Argraffiad)1605-7422

Cynhadledd

CynhadleddSPIE Medical Imaging 2018, Proceedings
Gwlad/TiriogaethUnol Daleithiau America
DinasHouston
Cyfnod10 Chwef 201815 Chwef 2018

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'End-to-end breast ultrasound lesions recognition with a deep learning approach'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn