Evaluation of visualization algorithms for CommSense system

Sandip Jana, Amit Kumar Mishra, Mohammed Zafar Ali Khan

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

2 Dyfyniadau (Scopus)

Crynodeb

Application specific instrumentation (ASIN) makes use of sensors and AI (SensAI) algorithms for a highly specialized application, using less computational overhead, it can give good performance. This work evaluates the performance of communication based sensing (CommSense) system using Principal Component Analysis (PCA), kernel PCA (KPCA), t-distributed Stochastic Neighbour Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP) algorithms and their quality of projection. In this paper, we have used Earth Mover's Distance (EMD) (also known as 1st Wasserstein Distance (WD)) for assessing the projections and we reach at the conclusion that, in terms of implementation PCA is the best, but for visualization KPCA, t-SNE and UMAP perform better than PCA.

Iaith wreiddiolSaesneg
Teitl2022 IEEE 95th Vehicular Technology Conference - Spring, VTC 2022-Spring - Proceedings
CyhoeddwrIEEE Press
Nifer y tudalennau5
ISBN (Electronig)9781665482431
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 25 Awst 2022
Cyhoeddwyd yn allanolIe
Digwyddiad95th IEEE Vehicular Technology Conference - Spring, VTC 2022-Spring - Helsinki, Y Ffindir
Hyd: 19 Meh 202222 Meh 2022

Cyfres gyhoeddiadau

EnwIEEE Vehicular Technology Conference
Cyfrol2022-June
ISSN (Argraffiad)1550-2252

Cynhadledd

Cynhadledd95th IEEE Vehicular Technology Conference - Spring, VTC 2022-Spring
Gwlad/TiriogaethY Ffindir
DinasHelsinki
Cyfnod19 Meh 202222 Meh 2022

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Evaluation of visualization algorithms for CommSense system'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn