ExGate: Externally Controlled Gating for Feature-based Attention in Artificial Neural Networks

Jarryd Son, Amit Kumar Mishra

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (ISBN)

1 Dyfyniad (Scopus)

Crynodeb

The perceptual capabilities of artificial systems have come a long way since the advent of deep learning. These methods have proven to be effective, however, they are not as efficient as their biological counterparts. Visual attention is a set of mechanisms that are employed in biological visual systems to ease the computational load by only processing pertinent parts of the stimuli. This paper addresses the implementation of top-down, feature-based attention in an artificial neural network by the use of externally controlled neuron gating. Our results showed a 5% increase in classification accuracy on the CIFAR-10 dataset versus a non-gated version while adding a limited number of parameters. Our gated model also produces more reasonable errors in predictions by drastically reducing the prediction of classes that belong to a different category than the true class.

Iaith wreiddiolSaesneg
Teitl2022 International Joint Conference on Neural Networks, IJCNN 2022 - Proceedings
CyhoeddwrIEEE Press
Nifer y tudalennau7
ISBN (Electronig)9781728186719
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 30 Medi 2022
Cyhoeddwyd yn allanolIe
Digwyddiad2022 International Joint Conference on Neural Networks, IJCNN 2022 - Padua, Yr Eidal
Hyd: 18 Gorff 202223 Gorff 2022

Cyfres gyhoeddiadau

EnwProceedings of the International Joint Conference on Neural Networks
Cyfrol2022-July

Cynhadledd

Cynhadledd2022 International Joint Conference on Neural Networks, IJCNN 2022
Gwlad/TiriogaethYr Eidal
DinasPadua
Cyfnod18 Gorff 202223 Gorff 2022

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'ExGate: Externally Controlled Gating for Feature-based Attention in Artificial Neural Networks'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn