TY - JOUR
T1 - Feature Selection based on Rough Sets and Particle Swarm Optimization
AU - Yang, Jie
AU - Xia, W.
AU - Wang, Xiangyang
AU - Jensen, Richard
AU - Teng, X.
N1 - X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen. Feature Selection based on Rough Sets and Particle Swarm Optimization. Pattern Recognition Letters, vol. 28, no. 4, pp. 459-471, 2007.
PY - 2007
Y1 - 2007
N2 - We propose a new feature selection strategy based on rough sets and Particle Swarm Optimization (PSO). Rough sets has been used as a feature selection method with much success, but current hill-climbing rough set approaches to feature selection are inadequate at finding optimal reductions as no perfect heuristic can guarantee optimality. On the other hand, complete searches are not feasible for even medium-sized datasets. So, stochastic approaches provide a promising feature selection mechanism. Like Genetic Algorithms, PSO is a new evolutionary computation technique, in which each potential solution is seen as a particle with a certain velocity
flying through the problem space. The Particle Swarms find optimal regions of the complex search space through the interaction of individuals in the population. PSO is attractive for feature selection in that particle swarms will discover best feature combinations as they fly within the subset space. Compared with GAs, PSO does not need complex operators such as crossover and
mutation, it requires only primitive and simple mathematical operators, and is computationally inexpensive in terms of both memory and runtime. Experimentation is carried out, using UCI data, which compares the proposed algorithm with a GA-based approach and other deterministic rough
set reduction algorithms. The results show that PSO is efficient for rough set-based feature selection.
AB - We propose a new feature selection strategy based on rough sets and Particle Swarm Optimization (PSO). Rough sets has been used as a feature selection method with much success, but current hill-climbing rough set approaches to feature selection are inadequate at finding optimal reductions as no perfect heuristic can guarantee optimality. On the other hand, complete searches are not feasible for even medium-sized datasets. So, stochastic approaches provide a promising feature selection mechanism. Like Genetic Algorithms, PSO is a new evolutionary computation technique, in which each potential solution is seen as a particle with a certain velocity
flying through the problem space. The Particle Swarms find optimal regions of the complex search space through the interaction of individuals in the population. PSO is attractive for feature selection in that particle swarms will discover best feature combinations as they fly within the subset space. Compared with GAs, PSO does not need complex operators such as crossover and
mutation, it requires only primitive and simple mathematical operators, and is computationally inexpensive in terms of both memory and runtime. Experimentation is carried out, using UCI data, which compares the proposed algorithm with a GA-based approach and other deterministic rough
set reduction algorithms. The results show that PSO is efficient for rough set-based feature selection.
U2 - 10.1016/j.patrec.2006.09.003
DO - 10.1016/j.patrec.2006.09.003
M3 - Article
SP - 459
EP - 471
JO - Pattern Recognition Letters
JF - Pattern Recognition Letters
ER -