Functional bioinformatics for Arabidopsis thaliana

Amanda Janet Clare, Andreas Karwath, Helen Joan Ougham, Ross Donald King

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

26 Dyfyniadau (Scopus)

Crynodeb

Motivation: The genome of Arabidopsis thaliana, which has the best understood plant genome, still has approximately one-third of its genes with no functional annotation at all from either MIPS or TAIR. We have applied our Data Mining Prediction (DMP) method to the problem of predicting the functional classes of these protein sequences. This method is based on using a hybrid machine-learning/data-mining method to identify patterns in the bioinformatic data about sequences that are predictive of function. We use data about sequence, predicted secondary structure, predicted structural domain, InterPro patterns, sequence similarity profile and expressions data. Results: We predicted the functional class of a high percentage of the Arabidopsis genes with currently unknown function. These predictions are interpretable and have good test accuracies. We describe in detail seven of the rules produced.
Iaith wreiddiolSaesneg
Tudalennau (o-i)1130-1136
Nifer y tudalennau7
CyfnodolynBioinformatics
Cyfrol22
Rhif cyhoeddi9
Dyddiad ar-lein cynnar15 Chwef 2006
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 01 Mai 2006

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Functional bioinformatics for Arabidopsis thaliana'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn