Fuzzy-rough Classifier Ensemble Selection

Ren Diao, Qiang Shen

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

10 Dyfyniadau (Scopus)
186 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

Classifier ensembles constitute one of the main research directions in machine learning and data mining. Ensembles allow higher accuracy to be achieved which is otherwise often not achievable with a single classifier. A number of approaches have been adopted for constructing classifier ensembles and aggregate ensemble decisions. In most cases, these constructed ensembles contain redundant members that, if removed, may further increase ensemble diversity and produce better results. Smaller ensembles also relax the memory and storage requirements of an ensemble system, reducing its runtime overhead while improving overall efficiency. In this paper, a new approach to classifier ensemble selection based on fuzzyrough feature selection and harmony search is proposed. By transforming the ensemble predictions into training samples, classifiers are treated as features. Harmony search is then used to select a minimal subset of such artificial features that maximises the fuzzy-rough dependency measure. The resulting technique is compared against the original ensemble and ensembles formed using random selection, under both single algorithm and mixed classifier ensemble environments.
Iaith wreiddiolSaesneg
Teitl2011 IEEE International Conference on Fuzzy Systems
CyhoeddwrIEEE Press
Tudalennau1516-1522
Nifer y tudalennau7
ISBN (Electronig)978-1-4244-7316-8
ISBN (Argraffiad)978-1-4244-7315-1
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 06 Medi 2011
DigwyddiadFuzzy Systems - Taipei, Taiwan
Hyd: 27 Meh 201130 Meh 2011
Rhif y gynhadledd: 20

Cynhadledd

CynhadleddFuzzy Systems
Teitl crynoFUZZ-IEEE-2011
Gwlad/TiriogaethTaiwan
DinasTaipei
Cyfnod27 Meh 201130 Meh 2011

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Fuzzy-rough Classifier Ensemble Selection'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn