Generalization regions in hamming negative selection

Thomas Stibor*, Jonathan Timmis, Claudia Eckert

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

7 Dyfyniadau (Scopus)

Crynodeb

Negative selection is an immune-inspired algorithm which is typically applied to anomaly detection problems. We present an empirical investigation of the generalization capability of the Hamming negative selection, when combined with the r-chunk affinity metric. Our investigations reveal that when using the r-chunk metric, the length r is a crucial parameter and is inextricably linked to the input data being analyzed. Moreover, we propose that input data with different characteristics, i.e. different positional biases, can result in an incorrect generalization effect.

Iaith wreiddiolSaesneg
TeitlIntelligent Information Processing and Web Mining
GolygyddionMieczyslaw Klopotek, Krzysztof Trojanowski, Slawomir Wierzchon
CyhoeddwrSpringer Nature
Tudalennau447-456
Nifer y tudalennau10
ISBN (Argraffiad)9783540335207
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 2006

Cyfres gyhoeddiadau

EnwAdvances in Soft Computing
Cyfrol35
ISSN (Argraffiad)1615-3871
ISSN (Electronig)1860-0794

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Generalization regions in hamming negative selection'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn