Graph Attention Based Spatial Temporal Network for EEG Signal Representation

James Msonda, Zhimin He, Chuan Lu*

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Cyfraniad at gynhadleddPapuradolygiad gan gymheiriaid

33 Wedi eu Llwytho i Lawr (Pure)


Graph attention networks (GATs) based architectures have proved to be powerful at implicitly learning relationships between adjacent nodes in a graph. For electroencephalogram (EEG) signals, however, it is also essential to highlight electrode locations or underlying brain regions which are active when a particular event related potential (ERP) is evoked. Moreover, it is often im-portant to identify corresponding EEG signal time segments within which the ERP is activated. We introduce a GAT Inspired Spatial Temporal (GIST) net-work that uses multilayer GAT as its base for three attention blocks: edge atten-tions, followed by node attention and temporal attention layers, which focus on relevant brain regions and time windows for better EEG signal classification performance, and interpretability. We assess the capability of the architecture by using publicly available Transcranial Electrical Stimulation (TES), neonatal pain (NP) and DREAMER EEG datasets. With these datasets, the model achieves competitive performance. Most importantly, the paper presents atten-tion visualisation and suggests ways of interpreting them for EEG signal under-standing.
Iaith wreiddiolSaesneg
Nifer y tudalennau13
StatwsDerbyniwyd/Yn y wasg - Medi 2023
DigwyddiadThe 22nd UK Workshop on Computational Intelligence - Aston University, Birmingham, Teyrnas Unedig Prydain Fawr a Gogledd Iwerddon
Hyd: 06 Medi 202308 Medi 2023
Rhif y gynhadledd: 22


CynhadleddThe 22nd UK Workshop on Computational Intelligence
Teitl crynoUKCI 2023
Gwlad/TiriogaethTeyrnas Unedig Prydain Fawr a Gogledd Iwerddon
Cyfnod06 Medi 202308 Medi 2023
Cyfeiriad rhyngrwyd

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Graph Attention Based Spatial Temporal Network for EEG Signal Representation'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn