HDRANet: Hybrid dilated residual attention network for SAR image despeckling

Jingyu Li, Ying Li*, Yayuan Xiao, Yunpeng Bai

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

34 Dyfyniadau (Scopus)
59 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

In order to remove speckle noise from original synthetic aperture radar (SAR) images effectively and efficiently, this paper proposes a hybrid dilated residual attention network (HDRANet) with residual learning for SAR despeckling. Firstly, HDRANet employs the hybrid dilated convolution (HDC) in lightweight network architecture to enlarge the receptive field and aggregate global information. Then, a simple yet effective attention module, convolutional block attention module (CBAM), is integrated into the proposed model to constitute a residual HDC attention block through skip connection, which further enhances representation power and performance of the model. Extensive experimental results on the synthetic and real SAR images demonstrate the superior performance of HDRANet over the state-of-the-art methods in terms of quantitative metrics and visual quality.

Iaith wreiddiolSaesneg
Rhif yr erthygl2921
Nifer y tudalennau20
CyfnodolynRemote Sensing
Cyfrol11
Rhif cyhoeddi24
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 06 Rhag 2019
Cyhoeddwyd yn allanolIe

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'HDRANet: Hybrid dilated residual attention network for SAR image despeckling'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn