Hierarchical Multi-classification with Predictive Clustering Trees in Functional Genomics

Amanda Clare, Sašo Džeroski, Jan Struyf, Hendrik Blockeel

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

29 Dyfyniadau (Scopus)
116 Wedi eu Llwytho i Lawr (Pure)


This paper investigates how predictive clustering trees can be used to predict gene function in the genome of the yeast Saccharomyces cerevisiae. We consider the MIPS FunCat classification scheme, in which each gene is annotated with one or more classes selected from a given functional class hierarchy. This setting presents two important challenges to machine learning: (1) each instance is labeled with a set of classes instead of just one class, and (2) the classes are structured in a hierarchy; ideally the learning algorithm should also take this hierarchical information into account. Predictive clustering trees generalize decision trees and can be applied to a wide range of prediction tasks by plugging in a suitable distance metric. We define an appropriate distance metric for hierarchical multi-classification and present experiments evaluating this approach on a number of data sets that are available for yeast.
Iaith wreiddiolSaesneg
TeitlProgress in Artificial Intelligence
Is-deitl12th Portuguese Conference on Artificial Intelligence, EPIA 2005, Covilha, Portugal, December 5-8, 2005, Proceedings
CyhoeddwrSpringer Nature
Nifer y tudalennau12
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 2005

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Hierarchical Multi-classification with Predictive Clustering Trees in Functional Genomics'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn