TY - JOUR
T1 - Human action recognition using deep rule-based classifier
AU - Sargano, Allah Bux
AU - Gu, Xiaowei
AU - Angelov, Plamen
AU - Habib , Zulfiqar
N1 - Publisher Copyright:
© 2020, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2020/11/1
Y1 - 2020/11/1
N2 - In recent years, numerous techniques have been proposed for human activity recognition (HAR) from images and videos. These techniques can be divided into two major categories: handcrafted and deep learning. Deep Learning-based models have produced remarkable results for HAR. However, these models have several shortcomings, such as the requirement for a massive amount of training data, lack of transparency, offline nature, and poor interpretability of their internal parameters. In this paper, a new approach for HAR is proposed, which consists of an interpretable, self-evolving, and self-organizing set of 0-order If...THEN rules. This approach is entirely data-driven, and non-parametric; thus, prototypes are identified automatically during the training process. To demonstrate the effectiveness of the proposed method, a set of high-level features is obtained using a pre-trained deep convolution neural network model, and a recently introduced deep rule-based classifier is applied for classification. Experiments are performed on a challenging benchmark dataset UCF50; results confirmed that the proposed approach outperforms state-of-the-art methods. In addition to this, an ablation study is conducted to demonstrate the efficacy of the proposed approach by comparing the performance of our DRB classifier with four state-of-the-art classifiers. This analysis revealed that the DRB classifier could perform better than state-of-the-art classifiers, even with limited training samples.
AB - In recent years, numerous techniques have been proposed for human activity recognition (HAR) from images and videos. These techniques can be divided into two major categories: handcrafted and deep learning. Deep Learning-based models have produced remarkable results for HAR. However, these models have several shortcomings, such as the requirement for a massive amount of training data, lack of transparency, offline nature, and poor interpretability of their internal parameters. In this paper, a new approach for HAR is proposed, which consists of an interpretable, self-evolving, and self-organizing set of 0-order If...THEN rules. This approach is entirely data-driven, and non-parametric; thus, prototypes are identified automatically during the training process. To demonstrate the effectiveness of the proposed method, a set of high-level features is obtained using a pre-trained deep convolution neural network model, and a recently introduced deep rule-based classifier is applied for classification. Experiments are performed on a challenging benchmark dataset UCF50; results confirmed that the proposed approach outperforms state-of-the-art methods. In addition to this, an ablation study is conducted to demonstrate the efficacy of the proposed approach by comparing the performance of our DRB classifier with four state-of-the-art classifiers. This analysis revealed that the DRB classifier could perform better than state-of-the-art classifiers, even with limited training samples.
KW - Deep learning
KW - Fuzzy rule-based classifier
KW - Human action recognition
UR - http://www.scopus.com/inward/record.url?scp=85089469564&partnerID=8YFLogxK
U2 - 10.1007/s11042-020-09381-9
DO - 10.1007/s11042-020-09381-9
M3 - Article
SN - 1380-7501
VL - 79
SP - 30653
EP - 30667
JO - Multimedia Tools and Applications
JF - Multimedia Tools and Applications
IS - 41-42
ER -