Improved detection of transient events in wide area sky survey using convolutional neural networks

Jing Jing Liu, Tossapon Boongoen*, Natthakan Iam-On

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

21 Wedi eu Llwytho i Lawr (Pure)


The aim of data science is to catch up with the data-intensive life style as well as the demand for decision support, which becomes common in various domains such as medical, education and other smart solutions. As such, high quality of data analysis is greatly desired for accurate and effective downstreaming exploitations. This is also true for the domain of astronomical survey like GOTO (Gravitational-wave Optical Transient Observer), where large amount of raw data has been collected daily. This is one of recognised projects that search for transient events with the new breed of optical survey telescopes that can detect the sky faster and deeper. This is accomplished by comparing the night-specific data with the reference such that new bright sources are obtained for further study. However, the huge size of data makes it difficult to sift by naked eyes, thus requiring an automated system. Yet, many conventional machine-learning models have been sub-optimal for this task, as true positives can hardly be recognised due to the nature of imbalance data. This motivates the exploration of convolutional neural networks or CNN for this binary classification problem. Based on existing technologies, the paper reports the original application of basic CNN model to a representative data, which has been designed and generated within the GOTO project. In addition to the improvement over those previous works, this empirical study also includes details of parameter analysis, which will be useful for practice and further investigation.

Iaith wreiddiolSaesneg
Rhif yr erthygl100035
CyfnodolynData and Information Management
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsDerbyniwyd/Yn y wasg - 04 Chwef 2023

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Improved detection of transient events in wide area sky survey using convolutional neural networks'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn