Increasing Efficiency of Evolutionary Algorithms by Choosing between Auxiliary Fitness Functions with Reinforcement Learning

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

29 Dyfyniadau (Scopus)

Crynodeb

In this paper further investigation of the previously proposed method of speeding up single-objective evolutionary algorithms is done. The method is based on reinforcement learning which is used to choose auxiliary fitness functions. The requirements for this method are formulated. The compliance of the method with these requirements is illustrated on model problems such as Royal Roads problem and H-IFF optimization problem. The experiments confirm that the method increases the efficiency of evolutionary algorithms.
Iaith wreiddiolSaesneg
TeitlICMLA '12
Is-deitlProceedings of the 2012 11th International Conference on Machine Learning and Applications
CyhoeddwrIEEE Press
Tudalennau150-155
Nifer y tudalennau6
Cyfrol1
ISBN (Argraffiad)978-1-4673-4651-1
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 12 Rhag 2012
Cyhoeddwyd yn allanolIe

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Increasing Efficiency of Evolutionary Algorithms by Choosing between Auxiliary Fitness Functions with Reinforcement Learning'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn