Induction of quantified fuzzy rules with particle swarm optimisation

Tianhua Chen, Qiang Shen, Pan Su, Changjing Shang

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

2 Dyfyniadau (Scopus)

Crynodeb

The use of fuzzy quantifiers to modify the fuzzy linguistic terms in fuzzy models helps build fuzzy systems in a more natural way, by capturing finer pieces of information embedded in the training data. This paper presents a practical approach for the acquisition of fuzzy production rules with quantifiers, based on a class-dependent simultaneous rule learning strategy where each class is associated with a subset of descriptive rules. It is implemented by particle swam optimisation. The performance of the learned fuzzy rules with and without fuzzy quantifiers is evaluated on various UCI benchmark data sets, in comparison to popular alternative rule based learning classifiers. Experimental results demonstrate that rule bases generated by the proposed approach indeed boost classification performance as compared to those involving no fuzzy quantifiers, with at least competitive performance to the alternative learning classifiers.
Iaith wreiddiolSaesneg
Teitl2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
CyhoeddwrIEEE Press
Tudalennau1-7
Nifer y tudalennau7
StatwsCyhoeddwyd - 2015
DigwyddiadFuzzy Systems - Istanbul, Twrci
Hyd: 02 Awst 201505 Awst 2015
Rhif y gynhadledd: 24

Cynhadledd

CynhadleddFuzzy Systems
Teitl crynoFUZZ-IEEE-2015
Gwlad/TiriogaethTwrci
DinasIstanbul
Cyfnod02 Awst 201505 Awst 2015

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Induction of quantified fuzzy rules with particle swarm optimisation'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn