Crynodeb
The use of fuzzy quantifiers to modify the fuzzy linguistic terms in fuzzy models helps build fuzzy systems in a more natural way, by capturing finer pieces of information embedded in the training data. This paper presents a practical approach for the acquisition of fuzzy production rules with quantifiers, based on a class-dependent simultaneous rule learning strategy where each class is associated with a subset of descriptive rules. It is implemented by particle swam optimisation. The performance of the learned fuzzy rules with and without fuzzy quantifiers is evaluated on various UCI benchmark data sets, in comparison to popular alternative rule based learning classifiers. Experimental results demonstrate that rule bases generated by the proposed approach indeed boost classification performance as compared to those involving no fuzzy quantifiers, with at least competitive performance to the alternative learning classifiers.
Iaith wreiddiol | Saesneg |
---|---|
Teitl | 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) |
Cyhoeddwr | IEEE Press |
Tudalennau | 1-7 |
Nifer y tudalennau | 7 |
Statws | Cyhoeddwyd - 2015 |
Digwyddiad | Fuzzy Systems - Istanbul, Twrci Hyd: 02 Awst 2015 → 05 Awst 2015 Rhif y gynhadledd: 24 |
Cynhadledd
Cynhadledd | Fuzzy Systems |
---|---|
Teitl cryno | FUZZ-IEEE-2015 |
Gwlad/Tiriogaeth | Twrci |
Dinas | Istanbul |
Cyfnod | 02 Awst 2015 → 05 Awst 2015 |