Inequalities for the number of monotonic functions of partial orders

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Crynodeb

Let P be a finite poset and let x, y, ∈ P. Let C be a finite chain. Define NS(i, j) to be the number of strict order-preserving maps ω: P → C satisfying ω(x) = i) and ω(y) = j. Various inequalities are proved, commencing with Theorem 2: If r, s, t, u, v, w are non-negative integers then Ns(r, u + v + w)NS(r + s + t, u)⩽NS(r + s, u + w)NS(r + t, u +v). The case v = w = 0 is a theorem of Daykin, Daykin and Paterson, which is an analogue of a theorem of Stanley for linear extensions.
Iaith wreiddiolSaesneg
Tudalennau (o-i)41-55
Nifer y tudalennau15
CyfnodolynDiscrete Mathematics
Cyfrol61
Rhif cyhoeddi1
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 01 Awst 1986
Cyhoeddwyd yn allanolIe

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Inequalities for the number of monotonic functions of partial orders'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn