Informationally complete sets of Gaussian measurements

Jukka Kiukas, Jussi Schultz

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

11 Dyfyniadau (Scopus)

Crynodeb

We prove the necessary and sufficient conditions for the informational completeness of an arbitrary set of Gaussian observables on continuous variable systems with a finite number of degrees of freedom. In particular, we show that an informationally complete set either contains a single informationally complete observable, or includes infinitely many observables. We show that for a single informationally complete observable, the minimal outcome space is the phase space, and the corresponding probability distribution can always be obtained from the quantum optical Q-function by linear postprocessing and Gaussian convolution, in a suitable symplectic coordinatization of the phase space. In the case of projection valued Gaussian observables, e.g., generalized field quadratures, we show that an informationally complete set of observables is necessarily infinite. Finally, we generalize the treatment to the case where the measurement coupling is given by a general linear bosonic channel, and characterize informational completeness for an arbitrary set of the associated observables.

Iaith wreiddiolSaesneg
Rhif yr erthygl485303
CyfnodolynJournal of Physics A: Mathematical and Theoretical
Cyfrol46
Rhif cyhoeddi48
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 12 Tach 2013
Cyhoeddwyd yn allanolIe

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Informationally complete sets of Gaussian measurements'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn