Interpolating deep spatio-temporal inference network features for image classification

Yongfeng Zhang, Changjing Shang, Qiang Shen

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)


This paper presents a novel approach for image classification, by integrating the concepts of deep machine learning and feature interpolation. In particular, a recently introduced learning architecture, the Deep Spatio-Temporal Inference Network (DeSTIN) [1] is employed to perform feature extraction for support vector machine (SVM) based image classification. Linear interpolation and Newton polynomial interpolation are each applied to support the classification. This approach converts feature sets of an originally low-dimensionality into those of a significantly higher dimensionality while gaining overall computational simplification. The work is tested against the popular MNIST dataset of handwritten digits [2]. Experimental results indicate that the proposed approach is highly promising.
Iaith wreiddiolSaesneg
Teitl2014 International Join Conference on Neural Networks (IJCNN)
CyhoeddwrIEEE Press
ISBN (Argraffiad)978-1-4799-6627-1
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 2014

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Interpolating deep spatio-temporal inference network features for image classification'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn