Localization, segmentation, and classification of mammographic abnormalities using deep learning

Adeela Islam*, Zobia Suhail, Reyer Zwiggelaar

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

Crynodeb

Breast cancer is a disease caused by abnormal growth of cells in the breast. We have investigated a deep learning pipeline, which provides classification (e.g. normal/ abnormal), and subsequently localization and segmentation of abnormalities. We have used the digital database for screening mammography in this work. The contributions of this paper are two-fold. First, we classify between normal and abnormal mammograms with a 100% training and 98.34% testing accuracy. Second, a framework is proposed to localize and segment abnormalities from abnormal images with a training loss of 0.57 and a testing loss of 0.55 where the multi-task loss function combines the loss of classification, localization, and segmentation mask.

Iaith wreiddiolSaesneg
Teitl17th International Workshop on Breast Imaging, IWBI 2024
GolygyddionMaryellen L. Giger, Heather M. Whitney, Karen Drukker, Hui Li
CyhoeddwrSPIE
ISBN (Electronig)9781510680203
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 2024
Digwyddiad17th International Workshop on Breast Imaging, IWBI 2024 - Chicago, Unol Daleithiau America
Hyd: 09 Meh 202412 Meh 2024

Cyfres gyhoeddiadau

EnwProceedings of SPIE - The International Society for Optical Engineering
Cyfrol13174
ISSN (Argraffiad)0277-786X
ISSN (Electronig)1996-756X

Cynhadledd

Cynhadledd17th International Workshop on Breast Imaging, IWBI 2024
Gwlad/TiriogaethUnol Daleithiau America
DinasChicago
Cyfnod09 Meh 202412 Meh 2024

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Localization, segmentation, and classification of mammographic abnormalities using deep learning'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn