Prosiectau fesul blwyddyn
Crynodeb
The analysis of the dependence of integral operators on perturbations plays an important role in the study of inverse problems and of perturbed boundary value problems. In this paper, we focus on the mapping properties of the volume potentials with weakly singular periodic kernels. Our main result is to prove that the map which takes a density function and a periodic kernel to a (suitable restriction of the) volume potential is bilinear and continuous with values in a Roumieu class of analytic functions. This result extends to the periodic case of some previous results obtained by the authors for nonperiodic potentials, and it is motivated by the study of perturbation problems for the solutions of boundary value problems for elliptic differential equations in periodic domains.
Iaith wreiddiol | Saesneg |
---|---|
Tudalennau (o-i) | 129-149 |
Nifer y tudalennau | 21 |
Cyfnodolyn | Journal of Integral Equations and Applications |
Cyfrol | 32 |
Rhif cyhoeddi | 2 |
Dynodwyr Gwrthrych Digidol (DOIs) | |
Statws | Cyhoeddwyd - 28 Awst 2020 |
Ôl bys
Gweld gwybodaeth am bynciau ymchwil 'Mapping properties of weakly singular periodic volume potentials in Roumieu classes'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.Prosiectau
- 1 Wedi Gorffen
-
A Functional analytic approach for the analysis of nonlinear transmission problems (FAANon)
Mishuris, G. (Prif Ymchwilydd)
Horizon 2020 -European Commission
01 Rhag 2015 → 30 Tach 2017
Prosiect: Ymchwil a ariannwyd yn allanol