Mars surface context cameras past, present and future

Matthew Gunn, Claire Cousins

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

15 Dyfyniadau(SciVal)
170 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

Mars has been the focus of robotic space exploration since the 1960s, in which time there have been over 40 missions, some successful, some not. Camera systems have been a core component of all instrument payloads sent to the Martian surface, harnessing some combination of monochrome, color, multispectral, and stereo imagery. Together, these datasets provide the geological context to a mission, which over the decades has included the characterization and spatial mapping of geological units and associated stratigraphy, charting active surface processes such as dust devils and water ice sublimation, and imaging the robotic manipulation of samples via scoops (Viking), drills (Mars Science Laboratory (MSL) Curiosity), and grinders (Mars Exploration Rovers). Through the decades, science context imaging has remained an integral part of increasingly advanced analytical payloads, with continual advances in spatial and spectral resolution, radiometric and geometric calibration, and image analysis techniques. Mars context camera design has encompassed major technological shifts, from single photomultiplier tube detectors to megapixel charged-couple-devices, and from multichannel to Bayer filter color imaging. Here we review the technological capability and evolution of science context imaging instrumentation resulting from successful surface missions to Mars, and those currently in development for planned future missions.
Iaith wreiddiolSaesneg
Tudalennau (o-i)144-162
Nifer y tudalennau19
CyfnodolynEarth and Space Science
Cyfrol3
Rhif cyhoeddi4
Dyddiad ar-lein cynnar27 Ebr 2016
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 13 Mai 2016

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Mars surface context cameras past, present and future'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn