TY - JOUR
T1 - Nitrogen and plant population change radiation capture and utilization capacity of sunflower in semi-arid environment
AU - Awais, Muhammad
AU - Wajid, Aftab
AU - Bashir, Muhammad Usman
AU - Rahman, Muhammad Habib ur
AU - Raza, Muhammad Aown Sammar
AU - Ahmad, Ashfaq
AU - Saleem, Muhammad Farrukh
AU - Hammad, Hafiz Mohkum
AU - Mubeen, Muhammad
AU - Saeed, Umer
AU - Arshad, Muhammad Naveed
AU - Fahad, Shah
N1 - Funding Information:
We are thankful to Higher Education Commission (HEC), Pakistan, for providing financial support to this research (grant number 117-3166-AV7-053).
Publisher Copyright:
© 2017, Springer-Verlag Berlin Heidelberg.
PY - 2017/7/1
Y1 - 2017/7/1
N2 - The combination of nitrogen and plant population expresses the spatial distribution of crop plants. The spatial distribution influences canopy structure and development, radiation capture, accumulated intercepted radiation (Sa), radiation use efficiency (RUE), and subsequently dry matter production. We hypothesized that the sunflower crop at higher plant populations and nitrogen (N) rates would achieve early canopy cover, capture more radiant energy, utilize radiation energy more efficiently, and ultimately increase economic yield. To investigate the above hypothesis, we examined the influences of leaf area index (LAI) at different plant populations (83,333, 66,666, and 55,555 plants ha−1) and N rates (90, 120, and 150 kg ha−1) on radiation interception (Fi), photosynthetically active radiation (PAR) accumulation (Sa), total dry matter (TDM), achene yield (AY), and RUE of sunflower. The experimental work was conducted during 2012 and 2013 on sandy loam soil in Punjab, Pakistan. The sunflower crop captured more than 96% of incident radiant energy (mean of all treatments), 98% with a higher plant population (83,333 plants ha−1), and 97% with higher N application (150 kg ha−1) at the fifth harvest (60 days after sowing) during both study years. The plant population of 83,333 plants ha−1 with 150 kg N ha−1 ominously promoted crop, RUE, and finally productivity of sunflower (AY and TDM). Sunflower canopy (LAI) showed a very close and strong association with Fi (R 2 = 0.99 in both years), PAR (R 2 = 0.74 and 0.79 in 2012 and 2013, respectively), TDM (R 2 = 0.97 in 2012 and 0.91 in 2013), AY (R 2 = 0.95 in both years), RUE for TDM (RUETDM) (R 2 = 0.63 and 0.71 in 2012 and 2013, respectively), and RUE for AY (RUEAY) (R 2 = 0.88 and 0.87 in 2012 and 2013, respectively). Similarly, AY (R 2 = 0.73 in 2012 and 0.79 in 2013) and TDM (R 2 = 0.75 in 2012 and 0.84 in 2013) indicated significant dependence on PAR accumulation of sunflower. High temperature during the flowering stage in 2013 shortened the crop maturity duration, which reduced the LAI, leaf area duration (LAD), crop growth rate (CGR), TDM, AY, Fi, Sa, and RUE of sunflower. Our results clearly revealed that RUE was enhanced as plant population and N application rates were increased and biomass assimilation in semi-arid environments varied with radiation capture capacity of sunflower
AB - The combination of nitrogen and plant population expresses the spatial distribution of crop plants. The spatial distribution influences canopy structure and development, radiation capture, accumulated intercepted radiation (Sa), radiation use efficiency (RUE), and subsequently dry matter production. We hypothesized that the sunflower crop at higher plant populations and nitrogen (N) rates would achieve early canopy cover, capture more radiant energy, utilize radiation energy more efficiently, and ultimately increase economic yield. To investigate the above hypothesis, we examined the influences of leaf area index (LAI) at different plant populations (83,333, 66,666, and 55,555 plants ha−1) and N rates (90, 120, and 150 kg ha−1) on radiation interception (Fi), photosynthetically active radiation (PAR) accumulation (Sa), total dry matter (TDM), achene yield (AY), and RUE of sunflower. The experimental work was conducted during 2012 and 2013 on sandy loam soil in Punjab, Pakistan. The sunflower crop captured more than 96% of incident radiant energy (mean of all treatments), 98% with a higher plant population (83,333 plants ha−1), and 97% with higher N application (150 kg ha−1) at the fifth harvest (60 days after sowing) during both study years. The plant population of 83,333 plants ha−1 with 150 kg N ha−1 ominously promoted crop, RUE, and finally productivity of sunflower (AY and TDM). Sunflower canopy (LAI) showed a very close and strong association with Fi (R 2 = 0.99 in both years), PAR (R 2 = 0.74 and 0.79 in 2012 and 2013, respectively), TDM (R 2 = 0.97 in 2012 and 0.91 in 2013), AY (R 2 = 0.95 in both years), RUE for TDM (RUETDM) (R 2 = 0.63 and 0.71 in 2012 and 2013, respectively), and RUE for AY (RUEAY) (R 2 = 0.88 and 0.87 in 2012 and 2013, respectively). Similarly, AY (R 2 = 0.73 in 2012 and 0.79 in 2013) and TDM (R 2 = 0.75 in 2012 and 0.84 in 2013) indicated significant dependence on PAR accumulation of sunflower. High temperature during the flowering stage in 2013 shortened the crop maturity duration, which reduced the LAI, leaf area duration (LAD), crop growth rate (CGR), TDM, AY, Fi, Sa, and RUE of sunflower. Our results clearly revealed that RUE was enhanced as plant population and N application rates were increased and biomass assimilation in semi-arid environments varied with radiation capture capacity of sunflower
KW - leaf area index
KW - crop growth rate
KW - leaf area duration
KW - phenology
KW - fraction of intercepted radiation
KW - photosynthetically active radiation
KW - Photosynthetically active radiation
KW - Phenology
KW - Leaf area duration
KW - Fraction of intercepted radiation
KW - Crop growth rate
KW - Leaf area index
UR - http://www.scopus.com/inward/record.url?scp=85020247863&partnerID=8YFLogxK
U2 - 10.1007/s11356-017-9308-7
DO - 10.1007/s11356-017-9308-7
M3 - Article
C2 - 28593549
SN - 0944-1344
VL - 24
SP - 17511
EP - 17525
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 21
ER -