Nonlinear Local Transformation Based Mammographic Image Enhancement

Cuiping Ding, Min Dong, Hongjuan Zhang, Yide Ma, Yaping Yan, Reyer Zwiggelaar

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

2 Dyfyniadau (Scopus)

Crynodeb

Mammography is one of the most effective techniques for early detection of breast cancer. The quality of the image may suffer from poor resolution or low contrast, which can effect the efficiency of radiologists. In order to improve the visual quality of mammograms, this paper introduces a new mammographic image enhancement algorithm. Firstly an intensity based nonlinear transformation is used for reducing the background tissue intensity, and secondly adaptive local contrast enhancement is realized based on local standard deviation and luminance information. The proposed method can obtain improved performance compared to alternative methods both covering objective and subjective aspects, based on 45 images. Experimental results demonstrate that the proposed algorithm can improve the contrast effectively and enhance lesion information (microcalcifications and/or masses).
Iaith wreiddiolSaesneg
TeitlBreast Imaging - 13th International Workshop, IWDM 2016, Proceedings
Is-deitl13th International Workshop, IWDM 2016, Malmö, Sweden, June 19-22, 2016, Proceedings
GolygyddionKristina Lang, Anders Tingberg, Pontus Timberg
CyhoeddwrSpringer Nature
Tudalennau167-173
Nifer y tudalennau7
ISBN (Electronig)978-3-319-41546-8
ISBN (Argraffiad)978-3-319-41545-1
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 17 Meh 2016

Cyfres gyhoeddiadau

EnwLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Cyfrol9699
ISSN (Argraffiad)0302-9743
ISSN (Electronig)1611-3349

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Nonlinear Local Transformation Based Mammographic Image Enhancement'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn