@inproceedings{450496c08b7f4beda76aba467aa3e41b,
title = "Orderly Disorder in Point Cloud Domain",
abstract = "In the real world, out-of-distribution samples, noise and distortions exist in test data. Existing deep networks developed for point cloud data analysis are prone to overfitting and a partial change in test data leads to unpredictable behaviour of the networks. In this paper, we propose a smart yet simple deep network for analysis of 3D models using `orderly disorder' theory. Orderly disorder is a way of describing the complex structure of disorders within complex systems. Our method extracts the deep patterns inside a 3D object via creating a dynamic link to seek the most stable patterns and at once, throws away the unstable ones. Patterns are more robust to changes in data distribution, especially those that appear in the top layers. Features are extracted via an innovative cloning decomposition technique and then linked to each other to form stable complex patterns. Our model alleviates the vanishing-gradient problem, strengthens dynamic link propagation and substantially reduces the number of parameters. Extensive experiments on challenging benchmark datasets verify the superiority of our light network on the segmentation and classification tasks, especially in the presence of noise wherein our network's performance drops less than 10% while the state-of-the-art networks fail to work.",
keywords = "Point cloud, deep neural network, orderly disorder, segmentation, classification, Deep neural network, Segmentation, Classification, Orderly disorder",
author = "{Ghahremani Boozandani}, Morteza and Bernie Tiddeman and Yonghuai Liu and Ardhendu Behera",
note = "Funding Information: vided by Supercomputing Wales (SCW) and Aberystwyth University. M. Ghahremani acknowledges his AberDoc and President scholarships awarded by Aberystwyth University. Y. Liu and A. Behera are partially supported by BBSRC grant BB/R02118X/1 and UKIERI-DST grant CHARM (DST UKIERI-2018-19-10) respectively. Funding Information: The authors gratefully acknowledge the HPC resources provided by Supercomputing Wales (SCW) and Aberystwyth University. M. Ghahremani acknowledges his AberDoc and President scholarships awarded by Aberystwyth University. Y. Liu and A. Behera are partially supported by BBSRC grant BB/R02118X/1 and UKIERI-DST grant CHARM (DST UKIERI-2018-19-10) respectively. Publisher Copyright: {\textcopyright} 2020, Springer Nature Switzerland AG. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = nov,
day = "3",
doi = "10.1007/978-3-030-58604-1_30",
language = "English",
isbn = "9783030586034",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Nature",
pages = "494--509",
editor = "Andrea Vedaldi and Horst Bischof and Thomas Brox and Jan-Michael Frahm",
booktitle = "Computer Vision",
address = "Switzerland",
}