Prosiectau fesul blwyddyn
Crynodeb
In the real world, out-of-distribution samples, noise and distortions exist in test data. Existing deep networks developed for point cloud data analysis are prone to overfitting and a partial change in test data leads to unpredictable behaviour of the networks. In this paper, we propose a smart yet simple deep network for analysis of 3D models using `orderly disorder' theory. Orderly disorder is a way of describing the complex structure of disorders within complex systems. Our method extracts the deep patterns inside a 3D object via creating a dynamic link to seek the most stable patterns and at once, throws away the unstable ones. Patterns are more robust to changes in data distribution, especially those that appear in the top layers. Features are extracted via an innovative cloning decomposition technique and then linked to each other to form stable complex patterns. Our model alleviates the vanishing-gradient problem, strengthens dynamic link propagation and substantially reduces the number of parameters. Extensive experiments on challenging benchmark datasets verify the superiority of our light network on the segmentation and classification tasks, especially in the presence of noise wherein our network's performance drops less than 10% while the state-of-the-art networks fail to work.
Iaith wreiddiol | Saesneg |
---|---|
Teitl | Computer Vision |
Is-deitl | ECCV 2020 |
Golygyddion | Andrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm |
Cyhoeddwr | Springer Nature |
Tudalennau | 494-509 |
Nifer y tudalennau | 16 |
ISBN (Electronig) | 9783030586041 |
ISBN (Argraffiad) | 9783030586034 |
Dynodwyr Gwrthrych Digidol (DOIs) | |
Statws | Cyhoeddwyd - 03 Tach 2020 |
Cyfres gyhoeddiadau
Enw | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Cyfrol | 12373 LNCS |
ISSN (Argraffiad) | 0302-9743 |
ISSN (Electronig) | 1611-3349 |
Ôl bys
Gweld gwybodaeth am bynciau ymchwil 'Orderly Disorder in Point Cloud Domain'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.Prosiectau
- 1 Wedi Gorffen
-
A China-UK joint phenomics consortium to dissect the basis of crop stress resistance in the face of climate change
Doonan, J. (Prif Ymchwilydd), Han, J. (Cyd-ymchwilydd), Liu, Y. (Cyd-ymchwilydd) & Mur, L. (Cyd-ymchwilydd)
Biotechnology and Biological Sciences Research Council
01 Gorff 2018 → 31 Rhag 2023
Prosiect: Ymchwil a ariannwyd yn allanol