Properties and Construction of Unique Maximal Factorization Families for Strings

David E. Daykin, Jacqueline W. Daykin

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Crynodeb

We say a family of strings over an alphabet is an UMFF if every string has a unique maximal factorization over . Foundational work by Chen, Fox and Lyndon established properties of the Lyndon circ-UMFF, which is based on lexicographic ordering. Commencing with the circ-UMFF related to V-order, we then proved analogous factorization families for a further 32 Block-like binary orders. Here we distinguish between UMFFs and circ-UMFFs, and then study the structural properties of circ-UMFFs. These properties give rise to the complete construction of any circ-UMFF. We prove that any circ-UMFF is a totally ordered set and a factorization over it must be monotonic. We define atom words and initiate a study of u, v-atoms. Applications of circ-UMFFs arise in string algorithmics.
Iaith wreiddiolSaesneg
Tudalennau (o-i)1073-1084
Nifer y tudalennau12
CyfnodolynInternational Journal of Foundations of Computer Science
Cyfrol19
Rhif cyhoeddi4
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 01 Awst 2008
Cyhoeddwyd yn allanolIe

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Properties and Construction of Unique Maximal Factorization Families for Strings'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn