Crynodeb
The convenient graphical user-interfaces now available with advanced simulation software offer a powerful didactic tool for research-led teaching of methods in quantum chemistry and wider applications of quantum mechanics. In the student project work reported here, a homologous series of semiconducting chalcogenophenes (encompassing poly-thiophenes, poly-selenophenes and poly-tellurophenes) with varying polymer chain lengths were simulated in detail using density functional theory (DFT). Following geometry optimization, energy calculations reveal that increasing the length of the polymer chain (N) from a monomer to a hexamer leads to a narrowing and large-N convergence of the bandgap. It is found that hexa-tellurophene has significantly favourable electronic properties as compared to the other analogues, with a greatly enhanced electron affinity (−2.74 eV), and a corresponding bandgap energy of 2.18 eV, giving a superior matching to the solar spectrum.
Iaith wreiddiol | Saesneg |
---|---|
Rhif yr erthygl | 025401 |
Nifer y tudalennau | 13 |
Cyfnodolyn | European Journal of Physics |
Cyfrol | 44 |
Rhif cyhoeddi | 2 |
Dynodwyr Gwrthrych Digidol (DOIs) | |
Statws | Cyhoeddwyd - 02 Maw 2023 |
Ôl bys
Gweld gwybodaeth am bynciau ymchwil 'Quantum chemistry simulations in an undergraduate project: Tellurophenes as narrow bandgap semiconductor materials'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.Setiau Data
-
Supporting data for "Quantum Chemistry Simulations in an Undergraduate Project: Tellurophenes as Narrow Bandgap Semiconductor Materials"
Walker, B. & Finlayson, C., Prifysgol Aberystwyth | Aberystwyth University, 06 Maw 2023
Dangosydd eitem ddigidol (DOI): 10.20391/bf829ddb-2da8-45dd-9e2e-27478075bd0c
Set ddata
Ffeil