Quantum Feedback Networks: Hamiltonian Formulation

John Edward Gough, M. R. James

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

155 Dyfyniadau (Scopus)
140 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

A quantum network is an open system consisting of several component Markovian input-output subsystems interconnected by boson field channels carrying quantum stochastic signals. Generalizing the work of Chebotarev and Gregoratti, we formulate the model description by prescribing a candidate Hamiltonian for the network including details of the component systems, the field channels, their interconnections, interactions and any time delays arising from the geometry of the network. (We show that the candidate is a symmetric operator and proceed modulo the proof of selfadjointness.) The model is non-Markovian for finite time delays, but in the limit where these delays vanish we recover a Markov model and thereby deduce the rules for introducing feedback into arbitrary quantum networks. The type of feedback considered includes that mediated by the use of beam splitters. We are therefore able to give a system-theoretic approach to introducing connections between quantum mechanical state-based input-output systems, and give a unifying treatment using non-commutative fractional linear, or Möbius, transformations.
Iaith wreiddiolSaesneg
Tudalennau (o-i)1109-1132
Nifer y tudalennau24
CyfnodolynCommunications in Mathematical Physics
Cyfrol287
Rhif cyhoeddi3
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 01 Mai 2009

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Quantum Feedback Networks: Hamiltonian Formulation'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn