Refining pairwise similarity matrix for cluster ensemble problem with cluster relations

Natthakan Iam-On*, Tossapon Boongoen, Simon Garrett

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

66 Dyfyniadau (Scopus)

Crynodeb

Cluster ensemble methods have recently emerged as powerful techniques, aggregating several input data clusterings to generate a single output clustering, with improved robustness and stability. This paper presents two new similarity matrices, which are empirically evaluated and compared against the standard co-association matrix on six datasets (both artificial and real data) using four different combination methods and six clustering validity criteria. In all cases, the results suggest the new link-based similarity matrices are able to extract efficiently the information embedded in the input clusterings, and regularly suggest higher clustering quality in comparison to their competitor.

Iaith wreiddiolSaesneg
TeitlDiscovery Science - 11th International Conference, DS 2008, Proceedings
GolygyddionJean-Francois Boulicaut, Michael R. Berthold, Tamás Horváth
CyhoeddwrSpringer Nature
Tudalennau222-233
Nifer y tudalennau12
ISBN (Argraffiad)3540884106, 9783540884101
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 2008
Digwyddiad11th International Conference on Discovery Science, DS 2008 - Budapest, Hwngari
Hyd: 13 Hyd 200816 Hyd 2008

Cyfres gyhoeddiadau

EnwLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Cyfrol5255 LNAI
ISSN (Argraffiad)0302-9743
ISSN (Electronig)1611-3349

Cynhadledd

Cynhadledd11th International Conference on Discovery Science, DS 2008
Gwlad/TiriogaethHwngari
DinasBudapest
Cyfnod13 Hyd 200816 Hyd 2008

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Refining pairwise similarity matrix for cluster ensemble problem with cluster relations'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn