Scattering poles near the real axis for two strictly convex obstacles

A. Iantchenko

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

4 Dyfyniadau(SciVal)

Crynodeb

To study the location of poles for the acoustic scattering matrix for two strictly convex obstacles with smooth boundaries, one uses an approximation of the quantized billiard operator M along the trapped ray between the two obstacles. Using this method Gérard (cf. [7]) obtained complete asymptotic expansions for the poles in a strip Im z ≤ c as Re z tends to infinity. He established the existence of parallel rows of poles close to Assuming that the boundaries are analytic and the eigenvalues of Poincaré map are non-resonant we use the Birkhoff normal form for M to improve his result and to get the complete asymptotic expansions for the poles in any logarithmic neighborhood of real axis.
Iaith wreiddiolSaesneg
Tudalennau (o-i)513-568
Nifer y tudalennau56
CyfnodolynAnnales Henri Poincaré
Cyfrol8
Rhif cyhoeddi3
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - Meh 2007

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Scattering poles near the real axis for two strictly convex obstacles'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn